为你,千千万万遍 2023-03-13 17:01 采纳率: 0%
浏览 10

强化学习格子类世界无法运行

使用GYm自带的环境Cartolpe-v0可以成功的运行,但是使用自己编写的格子环境就无法进行实验并且出现了维度不一样的报错。
具体报错如下:

img


报错定位如下:

img

报错显示矩阵无法进行计算,但是找不到具体的问题,state_dim=10,action_dim=5,格子总的数量有100个,请教如何进行修改。
源代码附上,有人遇到过此类问题吗 ,应该怎末处理?

import gym
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import rl_utils

class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return F.softmax(self.fc2(x), dim=1)

class REINFORCE:
    def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma,
                 device):
        self.policy_net = PolicyNet(state_dim, hidden_dim,
                                    action_dim).to(device)
        self.optimizer = torch.optim.Adam(self.policy_net.parameters(),
                                          lr=learning_rate)  # 使用Adam优化器
        self.gamma = gamma  # 折扣因子
        self.device = device

    def take_action(self, state):  # 根据动作概率分布随机采样
        state = torch.tensor([state], dtype=torch.float).to(self.device)
        probs = self.policy_net(state)
        action_dist = torch.distributions.Categorical(probs)
        action = action_dist.sample()
        return action.item()

    def update(self, transition_dict):
        reward_list = transition_dict['rewards']
        state_list = transition_dict['states']
        action_list = transition_dict['actions']

        G = 0
        self.optimizer.zero_grad()
        for i in reversed(range(len(reward_list))):  # 从最后一步算起
            reward = reward_list[i]
            state = torch.tensor([state_list[i]],
                                 dtype=torch.float).to(self.device)
            action = torch.tensor([action_list[i]]).view(-1, 1).to(self.device)
            log_prob = torch.log(self.policy_net(state).gather(1, action))
            G = self.gamma * G + reward
            loss = -log_prob * G  # 每一步的损失函数
            loss.backward()  # 反向传播计算梯度
        self.optimizer.step()  # 梯度下降


learning_rate = 1e-3
num_episodes = 1000
hidden_dim = 128
gamma = 0.98
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
    "cpu")

env_name = "GridWorld-v0"
env = gym.make(env_name)
env.seed(0)
torch.manual_seed(0)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = REINFORCE(state_dim, hidden_dim, action_dim, learning_rate, gamma,
                  device)

return_list = []
for i in range(10):
    with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:
        for i_episode in range(int(num_episodes / 10)):
            episode_return = 0
            transition_dict = {
                'states': [],
                'actions': [],
                'next_states': [],
                'rewards': [],
                'dones': []
            }
            state = env.reset()
            done = False
            while not done:
                action = agent.take_action(state)
                next_state, reward, done, _ = env.step(action)
                transition_dict['states'].append(state)
                transition_dict['actions'].append(action)
                transition_dict['next_states'].append(next_state)
                transition_dict['rewards'].append(reward)
                transition_dict['dones'].append(done)
                state = next_state
                episode_return += reward
            return_list.append(episode_return)
            agent.update(transition_dict)
            if (i_episode + 1) % 10 == 0:
                pbar.set_postfix({
                    'episode':
                    '%d' % (num_episodes / 10 * i + i_episode + 1),
                    'return':
                    '%.3f' % np.mean(return_list[-10:])
                })
            pbar.update(1)

episodes_list = list(range(len(return_list)))
plt.plot(episodes_list, return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('REINFORCE on {}'.format(env_name))
plt.show()

mv_return = rl_utils.moving_average(return_list, 9)
plt.plot(episodes_list, mv_return)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('REINFORCE on {}'.format(env_name))
plt.show()


rl_utls.py文件如下:

from tqdm import tqdm
import numpy as np
import torch
import collections
import random

class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity) 

    def add(self, state, action, reward, next_state, done): 
        self.buffer.append((state, action, reward, next_state, done)) 

    def sample(self, batch_size): 
        transitions = random.sample(self.buffer, batch_size)
        state, action, reward, next_state, done = zip(*transitions)
        return np.array(state), action, reward, np.array(next_state), done 

    def size(self): 
        return len(self.buffer)

def moving_average(a, window_size):
    cumulative_sum = np.cumsum(np.insert(a, 0, 0)) 
    middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size
    r = np.arange(1, window_size-1, 2)
    begin = np.cumsum(a[:window_size-1])[::2] / r
    end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]
    return np.concatenate((begin, middle, end))

def train_on_policy_agent(env, agent, num_episodes):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes/10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes/10)):
                episode_return = 0
                transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}
                state = env.reset()
                done = False
                while not done:
                    action = agent.take_action(state)
                    next_state, reward, done, _ = env.step(action)
                    transition_dict['states'].append(state)
                    transition_dict['actions'].append(action)
                    transition_dict['next_states'].append(next_state)
                    transition_dict['rewards'].append(reward)
                    transition_dict['dones'].append(done)
                    state = next_state
                    episode_return += reward
                return_list.append(episode_return)
                agent.update(transition_dict)
                if (i_episode+1) % 10 == 0:
                    pbar.set_postfix({'episode': '%d' % (num_episodes/10 * i + i_episode+1), 'return': '%.3f' % np.mean(return_list[-10:])})
                pbar.update(1)
    return return_list

def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size):
    return_list = []
    for i in range(10):
        with tqdm(total=int(num_episodes/10), desc='Iteration %d' % i) as pbar:
            for i_episode in range(int(num_episodes/10)):
                episode_return = 0
                state = env.reset()
                done = False
                while not done:
                    action = agent.take_action(state)
                    next_state, reward, done, _ = env.step(action)
                    replay_buffer.add(state, action, reward, next_state, done)
                    state = next_state
                    episode_return += reward
                    if replay_buffer.size() > minimal_size:
                        b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)
                        transition_dict = {'states': b_s, 'actions': b_a, 'next_states': b_ns, 'rewards': b_r, 'dones': b_d}
                        agent.update(transition_dict)
                return_list.append(episode_return)
                if (i_episode+1) % 10 == 0:
                    pbar.set_postfix({'episode': '%d' % (num_episodes/10 * i + i_episode+1), 'return': '%.3f' % np.mean(return_list[-10:])})
                pbar.update(1)
    return return_list


def compute_advantage(gamma, lmbda, td_delta):
    td_delta = td_delta.detach().numpy()
    advantage_list = []
    advantage = 0.0
    for delta in td_delta[::-1]:
        advantage = gamma * lmbda * advantage + delta
        advantage_list.append(advantage)
    advantage_list.reverse()
    return torch.tensor(advantage_list, dtype=torch.float)

  • 写回答

2条回答 默认 最新

  • sodhyfh 2023-03-13 21:23
    关注

    基于bing、GPT部分内容和本人思考总结:
    出现维度不一致的报错可能是因为你的自定义格子环境中的状态空间和动作空间的维度与CartPole-v0不同,需要进行相应的修改。在修改维度之前,我们需要先明确状态空间和动作空间的具体含义。
    状态空间(state)是指环境的状态,即包括所有的观测值,例如CartPole-v0的状态包括车的位置、速度和杆的角度、角速度。状态空间的维度应该等于一个状态所包含的观测值的数量。
    动作空间(action)是指智能体可以执行的动作,例如CartPole-v0的动作是向左或向右推车。动作空间的维度应该等于可选动作的数量。
    在你的自定义格子环境中,state_dim=10,action_dim=5,而格子的总数量是100个,这意味着你的状态空间和动作空间的维度与CartPole-v0不同,需要进行相应的修改。可以尝试修改状态空间和动作空间的维度,使其与你的自定义格子环境相匹配。同时也需要注意修改你的代码,确保状态和动作的维度与你的修改保持一致。例如,如果你的自定义格子环境的状态空间和动作空间的维度分别为state_dim和action_dim,可以在代码中将状态和动作的维度定义为(state_dim,)和(action_dim,),这样就可以避免维度不一致的错误。

    评论

报告相同问题?

问题事件

  • 创建了问题 3月13日

悬赏问题

  • ¥20 易康econgnition精度验证
  • ¥15 线程问题判断多次进入
  • ¥15 msix packaging tool打包问题
  • ¥28 微信小程序开发页面布局没问题,真机调试的时候页面布局就乱了
  • ¥15 python的qt5界面
  • ¥15 无线电能传输系统MATLAB仿真问题
  • ¥50 如何用脚本实现输入法的热键设置
  • ¥20 我想使用一些网络协议或者部分协议也行,主要想实现类似于traceroute的一定步长内的路由拓扑功能
  • ¥30 深度学习,前后端连接
  • ¥15 孟德尔随机化结果不一致