出现以下错误
RuntimeError: Given groups=1, weight of size [32, 3, 5, 5], expected input[1, 32, 16, 16] to have 3 channels, but got 32 channels instead
但是我打印图片类型输出,应该不会出错
torch.Size([1, 3, 32, 32])
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./data",train=False,
transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class Seq(nn.Module):
def __init__(self):
super(Seq,self).__init__()
self.module1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x = self.module1(x)
return x
#loss = nn.CrossEntropyLoss()
seq = Seq()
for data in dataloader:
imgs,targets = data
#print(imgs.shape)
output = seq(imgs)
#result = loss(outputs,target)