怎样用keras实现从预训练模型中提取多层特征? 5C

图片说明

我想从一个预训练的卷积神经网络的不同层中提取特征,然后把这些不同层的特征拼接在一起,实现如上图一样的网络结构,我写的代码如下

    base_model = VGGFace(model='resnet50', include_top=False)
    model1 = base_model
    model2 = base_model

    input1 = Input(shape=(197,197,3))
    model1_out = model1.layers[-12].output
    model1_in = model1.layers[0].output
    model1 = Model(model1_in,model1_out)
    x1 = model1(input1)
    x1 = GlobalMaxPool2D()(x1)


    x2 = model2(input1)
    x2 = GlobalMaxPool2D()(x2)
    out = Concatenate(axis=-1)([x1,x2])
    out = Dense(1,activation='sigmoid')(out)
    model3 = Model([input1,input2],out)

    from keras.utils import plot_model
    plot_model(model3,"model3.png")
    import matplotlib.pyplot as plt
    img = plt.imread('model3.png')
    plt.imshow(img)

但模型可视化显示如下,两个网络的权值并不共享。图片说明

1个回答

你这个用keras的函数模式就可以实现
https://www.jianshu.com/p/ee2a170b3a12

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
keras如何为已经训练好的模型添加层?

已经训练好的model,比如想在后面再添加lstm或者全连接层应该怎么做呢?

keras中使用预训练的VGG19网络能否处理单通道的灰度图?

在SRGAN当中,如果要对单通道的灰度图进行训练可以将输入层的尺寸改为(: ,: ,1),但是此时网络中使用的VGG19的 输入仍然为RGB三通道的图像,因此会报错。 VGG网络能否用于SRGAN对灰度图像的训练中?如果可以因当如何修改? 使用VGG19的代码如下: ``` def build_vgg(self): ``` vgg=VGG19(weights='imagenet') vgg.outputs = [vgg.layers[9].output] img = Input(shape=self.hr_shape) img_features = vgg(img) return Model(img, img_features)

基于tensorflow的ResNet特征怎么提取,能写下代码吗?

在网上找了一些代码,都没实现。我的环境是tensorflow框架的,没有GPU

使用keras搭的模型,训练时候,使用相同的loss和metrics,但是输出却不一样

keras搭的模型,训练时候,使用相同的loss和metrics,但是输出却不一样,为什么会出现这种情况呀

关于Colab上Keras模型转TPU模型的问题

使用TPU加速训练,将Keras模型转TPU模型时报错,如图![图片说明](https://img-ask.csdn.net/upload/202001/14/1578998736_238721.png) 关键代码如下 引用库: ``` %tensorflow_version 1.x import json import os import numpy as np import tensorflow as tf from tensorflow.python.keras.applications import resnet from tensorflow.python.keras import callbacks from tensorflow.python.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt ``` 转换TPU模型代码如下 ``` # This address identifies the TPU we'll use when configuring TensorFlow. TPU_WORKER = 'grpc://' + os.environ['COLAB_TPU_ADDR'] tf.logging.set_verbosity(tf.logging.INFO) self.model = tf.contrib.tpu.keras_to_tpu_model(self.model, strategy=tf.contrib.tpu.TPUDistributionStrategy(tf.contrib.cluster_resolver.TPUClusterResolver(TPU_WORKER))) self.model = resnet50.ResNet50(weights=None, input_shape=dataset.input_shape, classes=num_classes) ```

如果将keras情感分析模型应用到Java Web上,那Web后台怎么预处理字符串并转化为特征向量?

尚属初学折腾了一点简单的代码,但是很想知道怎么将训练模型应用到Web项目上。 训练模型时用了如下代码: ```python # 加载数据内容步骤省略 from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences tokenizer = Tokenizer() tokenizer.fit_on_texts(train_texts) train_sequences = tokenizer.texts_to_sequences(train_texts) test_sequences = tokenizer.texts_to_sequences(test_texts) train_data = pad_sequences(train_sequences, maxlen=MAX_SEQUENCE_LENGTH) test_data = pad_sequences(test_sequences, maxlen=MAX_SEQUENCE_LENGTH) ``` 因为tokenizer使用训练文本进行fit,记录了词典之类的信息,那我要在Web项目上调用模型预测文本的之前是否应该再用之前tokenizer里的信息去做预处理才对?那需要如此处理的话我在Web后台该怎么做?

Keras能否实现GRNN模型,如果可以那程序是怎么样的?

如题,不知GRNN能否通过Keras实现。。或通过tensorflow实现也行,最好是有源代码,感谢大神回答

如何利用Keras的函数式模型搭建一个局部连接的卷积神经网络模型?

最近在学习卷积神经网络模型,在对CNN鼻祖LeNet5进行构建时遇到了如下问题: 首先有这样一个连接模式: ![图片说明](https://img-ask.csdn.net/upload/201910/28/1572246925_411564.jpg) 需要由S2层的6个特征图谱生成C3层的16个特征图谱,但这16个map并不都是与上一层进行全连接卷积求和得到的 例如C3的map1只与S2的map1,2,3进行局部连接,卷积求和在加上一个bias就得到了C3的第一个特征图谱 那么这样的连接模式怎么使用Keras来表示呢? 首先考虑最简单的序贯模型,发现并没有相关的API可以用来指定上一层的某一部分特征图作为一下层的输入(也许是我没发现),然后考虑函数式模型: ``` import keras from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten from keras.models import Model input_LeNet5=Input(shape=(32,32,1)) c1=Conv2D(6,(5,5))(input_LeNet5) s2=MaxPooling2D((2,2))(c1) print(np.shape(s2)) ``` 这里我搭建出了LeNet5的前两层,并打印出了S2的形状,是一个(?,14,14,6)的张量,这里的6显然就是代表了S2中6张不同的map ``` TensorShape([Dimension(None), Dimension(14), Dimension(14), Dimension(6)]) ``` 那么是不是就可以考虑对张量的最后一维进行切片,如下,将S21作为c31的输入,代码是可以编译通过的 ``` s21=s2[:,:,:,0:3] c31=Conv2D(1,(5,5))(S21) ``` 但是最后调用Model对整个模型进行编译时就出错了 ``` model = Model(inputs=input_LeNet5, outputs=C31) ``` ``` AttributeError: 'NoneType' object has no attribute '_inbound_nodes' ``` 经过测试发现只要是对上一层的输入进行切片就会出现这样的问题,猜测是切片使得S21丢失了S2的数据类型以及属性 看了很多别人搭建的模型也没有涉及这一操作的,keras文档也没有相关描述。 特来请教有没有大牛搭建过类似的模型,不用keras也行

使用keras画出模型准确率评估的执行结果时出现:

建立好深度学习的模型后,使用反向传播法进行训练。 定义了训练方式: ``` model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy']) ``` 执行训练: ``` train_history =model.fit(x=x_Train_normalize, y=y_Train_OneHot,validation_split=0.2, epochs=10,batch_size=200,verbose=2) ``` 执行后出现: ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571243584_952792.png) 建立show_train_history显示训练过程: ``` import matplotlib.pyplot as plt def show_train_history(train_history,train,validation): plt.plot(train_history.history[train]) plt.plot(train_history.history[validation]) plt.title('Train History') plt.ylabel(train) plt.xlabel('Epoch') plt.legend(['train','validation'],loc='upper left') plt.show() ``` 画出准确率执行结果: ``` show_train_history(train_history,'acc','val_acc') ``` 结果出现以下问题: ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571243832_179270.png) 这是怎么回事呀? 求求大佬救救孩子555

关于keras 对模型进行训练 train_on_batch参数和模型输出的关系

在用keras+gym测试policy gradient进行小车杆平衡时模型搭建如下: ``` inputs = Input(shape=(4,),name='ob_inputs') x = Dense(16,activation='relu')(inputs) x = Dense(16,activation='relu')(x) x = Dense(1,activation='sigmoid')(x) model = Model(inputs=inputs,outputs = x) ``` 这里输出层是一个神经元,输出一个[0,1]之间的数,表示小车动作的概率 但是在代码训练过程中,模型的训练代码为: ``` X = np.array(states) y = np.array(list(zip(actions,discount_rewards))) loss = self.model.train_on_batch(X,y) ``` 这里的target data(y)是一个2维的列表数组,第一列是对应执行的动作,第二列是折扣奖励,那么在训练的时候,神经网络的输出数据和target data的维度不一致,是如何计算loss的呢?会自动去拟合y的第一列数据吗?

基于keras写的模型中自定义的函数(如损失函数)如何保存到模型中?

```python batch_size = 128 original_dim = 100 #25*4 latent_dim = 16 # z的维度 intermediate_dim = 256 # 中间层的维度 nb_epoch = 50 # 训练轮数 epsilon_std = 1.0 # 重参数 #my tips:encoding x = Input(batch_shape=(batch_size,original_dim)) h = Dense(intermediate_dim, activation='relu')(x) z_mean = Dense(latent_dim)(h) # mu z_log_var = Dense(latent_dim)(h) # sigma #my tips:Gauss sampling,sample Z def sampling(args): # 重采样 z_mean, z_log_var = args epsilon = K.random_normal(shape=(128, 16), mean=0., stddev=1.0) return z_mean + K.exp(z_log_var / 2) * epsilon # note that "output_shape" isn't necessary with the TensorFlow backend # my tips:get sample z(encoded) z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var]) # we instantiate these layers separately so as to reuse them later decoder_h = Dense(intermediate_dim, activation='relu') # 中间层 decoder_mean = Dense(original_dim, activation='sigmoid') # 输出层 h_decoded = decoder_h(z) x_decoded_mean = decoder_mean(h_decoded) #my tips:loss(restruct X)+KL def vae_loss(x, x_decoded_mean): xent_loss = original_dim * objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return xent_loss + kl_loss vae = Model(x, x_decoded_mean) vae.compile(optimizer='rmsprop', loss=vae_loss) vae.fit(x_train, x_train, shuffle=True, epochs=nb_epoch, verbose=2, batch_size=batch_size, validation_data=(x_valid, x_valid)) vae.save(path+'//VAE.h5') ``` 一段搭建VAE结构的代码,在保存模型后调用时先是出现了sampling中一些全局变量未定义的问题,将变量改为确定数字后又出现了vae_loss函数未定义的问题(unknown loss function: vae_loss) 个人认为是模型中自定义的函数在保存上出现问题,但是也不知道怎么解决。刚刚上手keras和tensorflow这些框架,很多问题是第一次遇到,麻烦大神们帮帮忙!感谢!

keras多输出模型和多任务学习multi-task learning的关系

看多任务学习的资料,有一种机制是主要任务和辅助任务会相互帮助提高性能,那么keras的多输出模型属不属于这种多任务学习尼?还是只是单纯的相互独立的多类别学习而已?

自动编码器如何提取特征

稀疏自动编码器返回的是一组权重矩阵W1,请问该矩阵的作用是什么?是不是和原数据 相乘得到提取的特征。拿书写体识别数据为例,有6万张28*28的数据,使用稀疏自动编 码器后得到权重矩阵,请问再怎么样得到提取的特征?

Keras实现LSTM进行情感分析的问题,如何正确增加隐层

源代码如下: ``` model = Sequential() model.add(Embedding(max_features, 256, input_length=maxlen)) model.add(LSTM(output_dim=128, activation='sigmoid', inner_activation='hard_sigmoid')) ``` 为什么总显示错误: TypeError: Expected int32, got <tf.Variable 'lstm_27_W_i:0' shape=(256, 128) dtype=float32_ref> of type 'Variable' instead.

保存keras模型时出现的问题

求助各路大神,小弟最近用keras跑神经网络模型,在训练和测试时都很好没问题,但是在保存时出现问题 小弟保存模型用的语句: json_string = model.to_json() open('my_model_architecture.json', 'w').write(json_string) #保存网络结构 model.save_weights('my_model_weights.h5',overwrite='true') #保存权重 但是运行后会显示Process finished with exit code -1073741819 (0xC0000005) 然后保存权重的.h5文件没有内容 求助各位大神是怎么回事啊

tensorflow 中怎么查看训练好的模型的参数呢?

采用tensorflow中已有封装好的模块进行训练后(比如tf.contrib.layers.fully_connected),怎么查看训练好的模型的参数呢(比如某一层的权重/偏置都是什么)?求指教

为什么同样的问题用Tensorflow和keras实现结果不一样?

**cifar-10分类问题,同样的模型结构以及损失函数还有学习率参数等超参数,分别用TensorFlow和keras实现。 20个epochs后在测试集上进行预测,准确率总是差好几个百分点,不知道问题出在哪里?代码如下: 这个是TF的代码:** import tensorflow as tf import numpy as np import pickle as pk tf.reset_default_graph() batch_size = 64 test_size = 10000 img_size = 32 num_classes = 10 training_epochs = 10 test_size=200 ############################################################################### def unpickle(filename): '''解压数据''' with open(filename, 'rb') as f: d = pk.load(f, encoding='latin1') return d def onehot(labels): '''one-hot 编码''' n_sample = len(labels) n_class = max(labels) + 1 onehot_labels = np.zeros((n_sample, n_class)) onehot_labels[np.arange(n_sample), labels] = 1 return onehot_labels # 训练数据集 data1 = unpickle('data_batch_1') data2 = unpickle('data_batch_2') data3 = unpickle('data_batch_3') data4 = unpickle('data_batch_4') data5 = unpickle('data_batch_5') X_train = np.concatenate((data1['data'], data2['data'], data3['data'], data4['data'], data5['data']), axis=0)/255.0 y_train = np.concatenate((data1['labels'], data2['labels'], data3['labels'], data4['labels'], data5['labels']), axis=0) y_train = onehot(y_train) # 测试数据集 test = unpickle('test_batch') X_test = test['data']/255.0 y_test = onehot(test['labels']) del test,data1,data2,data3,data4,data5 ############################################################################### w = tf.Variable(tf.random_normal([5, 5, 3, 32], stddev=0.01)) w_c= tf.Variable(tf.random_normal([32* 16* 16, 512], stddev=0.1)) w_o =tf.Variable(tf.random_normal([512, num_classes], stddev=0.1)) def init_bias(shape): return tf.Variable(tf.constant(0.0, shape=shape)) b=init_bias([32]) b_c=init_bias([512]) b_o=init_bias([10]) def model(X, w, w_c,w_o, p_keep_conv, p_keep_hidden,b,b_c,b_o): conv1 = tf.nn.conv2d(X, w,strides=[1, 1, 1, 1],padding='SAME')#32x32x32 conv1=tf.nn.bias_add(conv1,b) conv1 = tf.nn.relu(conv1) conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME')#16x16x32 conv1 = tf.nn.dropout(conv1, p_keep_conv) FC_layer = tf.reshape(conv1, [-1, 32 * 16 * 16]) out_layer=tf.matmul(FC_layer, w_c)+b_c out_layer=tf.nn.relu(out_layer) out_layer = tf.nn.dropout(out_layer, p_keep_hidden) result = tf.matmul(out_layer, w_o)+b_o return result trX, trY, teX, teY = X_train,y_train,X_test,y_test trX = trX.reshape(-1, img_size, img_size, 3) teX = teX.reshape(-1, img_size, img_size, 3) X = tf.placeholder("float", [None, img_size, img_size, 3]) Y = tf.placeholder("float", [None, num_classes]) p_keep_conv = tf.placeholder("float") p_keep_hidden = tf.placeholder("float") py_x = model(X, w, w_c,w_o, p_keep_conv, p_keep_hidden,b,b_c,b_o) Y_ = tf.nn.softmax_cross_entropy_with_logits_v2(logits=py_x, labels=Y) cost = tf.reduce_mean(Y_) optimizer = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(training_epochs): training_batch = zip(range(0, len(trX),batch_size),range(batch_size, len(trX)+1,batch_size)) perm=np.arange(len(trX)) np.random.shuffle(perm) trX=trX[perm] trY=trY[perm] for start, end in training_batch: sess.run(optimizer, feed_dict={X: trX[start:end],Y: trY[start:end],p_keep_conv:0.75,p_keep_hidden: 0.5}) test_batch = zip(range(0, len(teX),test_size),range(test_size, len(teX)+1,test_size)) accuracyResult=0 for start, end in test_batch: accuracyResult=accuracyResult+sum(np.argmax(teY[start:end], axis=1) ==sess.run(predict_op, feed_dict={X: teX[start:end],Y: teY[start:end],p_keep_conv: 1,p_keep_hidden: 1})) print(i, accuracyResult/10000) **这个是keras代码:** from keras import initializers from keras.datasets import cifar10 from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.optimizers import SGD, Adam, RMSprop #import matplotlib.pyplot as plt # CIFAR_10 is a set of 60K images 32x32 pixels on 3 channels IMG_CHANNELS = 3 IMG_ROWS = 32 IMG_COLS = 32 #constant BATCH_SIZE = 64 NB_EPOCH = 10 NB_CLASSES = 10 VERBOSE = 1 VALIDATION_SPLIT = 0 OPTIM = RMSprop() #load dataset (X_train, y_train), (X_test, y_test) = cifar10.load_data() #print('X_train shape:', X_train.shape) #print(X_train.shape[0], 'train samples') #print(X_test.shape[0], 'test samples') # convert to categorical Y_train = np_utils.to_categorical(y_train, NB_CLASSES) Y_test = np_utils.to_categorical(y_test, NB_CLASSES) # float and normalization X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 # network model = Sequential() model.add(Conv2D(32, (3, 3), padding='same',input_shape=(IMG_ROWS, IMG_COLS, IMG_CHANNELS),kernel_initializer=initializers.random_normal(stddev=0.01),bias_initializer=initializers.Zeros())) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) #0<参数<1才会有用 model.add(Flatten()) model.add(Dense(512,kernel_initializer=initializers.random_normal(stddev=0.1),bias_initializer=initializers.Zeros())) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(NB_CLASSES,kernel_initializer=initializers.random_normal(stddev=0.1),bias_initializer=initializers.Zeros())) model.add(Activation('softmax')) model.summary() # train model.compile(loss='categorical_crossentropy', optimizer=OPTIM,metrics=['accuracy']) model.fit(X_train, Y_train, batch_size=BATCH_SIZE,epochs=NB_EPOCH, validation_split=VALIDATION_SPLIT,verbose=VERBOSE) score = model.evaluate(X_test, Y_test,batch_size=200, verbose=VERBOSE) print("Test score:", score[0]) print('Test accuracy:', score[1])

keras实现人脸识别,训练失败……请教大神指点迷津!!!

![图片说明](https://img-ask.csdn.net/upload/201904/26/1556209614_615215.jpg) 各位大神,如图所示,在训练过程中,第二轮开始出现问题,这是什么原因呢? 代码如下: ------------------------------------------------- ``` import random import keras import numpy as np import cv2 from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.models import load_model from keras import backend as K from source_data import load_dataset,resize_img #定义数据集格式 class Dataset: def __init__(self, path_name): #训练数据集 self.train_images = None self.train_labels = None #测试集 self.valid_images = None self.valid_labels = None #样本数据 self.test_images = None self.test_labels = None #load路径 self.path_name = path_name #维度顺序 self.input_shape = None #加载数据集并按照交叉验证的原则划分数据集,完成数据预处理 def load(self,img_rows=64, img_cols=64,img_channels = 3,nb_classes = 2): #加载数据集到内存 images,labels=load_dataset(self.path_name)#函数调用 train_images, valid_images, train_labels, valid_labels= train_test_split(images, labels, test_size = 0.3, random_state = random.randint(0, 100)) _, test_images, _, test_labels = train_test_split(images, labels, test_size = 0.5, random_state = random.randint(0, 100)) #根据backend类型确定输入图片数据时的顺序为:channels,rows,cols,否则:rows,cols,channels #这部分代码就是根据keras库要求的维度顺序重组训练数据集 train_images = train_images.reshape(train_images.shape[0], img_rows, img_cols, img_channels) valid_images = valid_images.reshape(valid_images.shape[0], img_rows, img_cols, img_channels) test_images = test_images.reshape(test_images.shape[0], img_rows, img_cols, img_channels) self.input_shape = (img_rows, img_cols, img_channels) #输出训练集、验证集、测试集的数量 print(train_images.shape[0], 'train samples') print(valid_images.shape[0], 'valid samples') print(test_images.shape[0], 'test samples') #我们的模型使用categorical_crossentropy作为损失函数,因此需要根据类别数量nb_classes将 #类别标签进行one-hot编码使其向量化,在这里我们的类别只有两种,经过转化后标签数据变为二维 train_labels = np_utils.to_categorical(train_labels, nb_classes) valid_labels = np_utils.to_categorical(valid_labels, nb_classes) test_labels = np_utils.to_categorical(test_labels, nb_classes) #像素数据浮点化以便归一化 train_images = train_images.astype('float32') valid_images = valid_images.astype('float32') test_images = test_images.astype('float32') #将其归一化,图像的各像素值归一化到0—1区间 train_images /= 255 valid_images /= 255 test_images /= 255 self.train_images = train_images self.valid_images = valid_images self.test_images = test_images self.train_labels = train_labels self.valid_labels = valid_labels self.test_labels = test_labels class Model: def __init__(self): self.model = None #建立keras模型 def build_model(self, dataset, nb_classes = 2): #构建一个空的网络模型,序贯模型或线性堆叠模型,添加各个layer self.model = Sequential() #以下代码将顺序添加CNN网络需要的各层,一个add就是一个网络层 self.model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape = dataset.input_shape)) #1 2维卷积层 self.model.add(Activation('relu')) #2 激活函数层 self.model.add(Convolution2D(32, 3, 3)) #3 2维卷积层 self.model.add(Activation('relu')) #4 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) #5 池化层 self.model.add(Dropout(0.25)) #6 Dropout层 self.model.add(Convolution2D(64, 3, 3, border_mode='same')) #7 2维卷积层 self.model.add(Activation('relu')) #8 激活函数层 self.model.add(Convolution2D(64, 3, 3)) #9 2维卷积层 self.model.add(Activation('relu')) #10 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) #11 池化层 self.model.add(Dropout(0.25)) #12 Dropout层 self.model.add(Flatten()) #13 Flatten层 self.model.add(Dense(512)) #14 Dense层,又被称作全连接层 self.model.add(Activation('relu')) #15 激活函数层 self.model.add(Dropout(0.5)) #16 Dropout层 self.model.add(Dense(nb_classes)) #17 Dense层 self.model.add(Activation('softmax')) #18 分类层,输出最终结果 #Prints a string summary of the network self.model.summary() #训练模型 def train(self, dataset, batch_size = 20, nb_epoch = 10, data_augmentation = True): sgd = SGD(lr = 0.01, decay = 1e-6, momentum = 0.9, nesterov = True) #采用随机梯度下降优化器进行训练,首先生成一个优化器对象 self.model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy']) #完成实际的模型配置 #不使用数据提升,所谓的提升就是从我们提供的训练数据中利用旋转、翻转、加噪声等方法提升训练数据规模,增加模型训练量 if not data_augmentation: self.model.fit(dataset.train_images, dataset.train_labels, batch_size = batch_size, epochs = nb_epoch, validation_data = (dataset.valid_images, dataset.valid_labels), shuffle = True) #使用实时数据提升 else: #定义数据生成器用于数据提升,其返回一个生成器对象datagen,datagen每被调用一 #次其生成一组数据(顺序生成),节省内存,其实就是python的数据生成器 datagen = ImageDataGenerator( featurewise_center = False, #是否使输入数据去中心化(均值为0), samplewise_center = False, #是否使输入数据的每个样本均值为0 featurewise_std_normalization = False, #是否数据标准化(输入数据除以数据集的标准差) samplewise_std_normalization = False, #是否将每个样本数据除以自身的标准差 zca_whitening = False, #是否对输入数据施以ZCA白化 rotation_range = 20, #数据提升时图片随机转动的角度(范围为0~180) width_shift_range = 0.2, #数据提升时图片水平偏移的幅度(单位为图片宽度的占比,0~1之间的浮点数) height_shift_range = 0.2, #同上,只不过这里是垂直 horizontal_flip = True, #是否进行随机水平翻转 vertical_flip = False) #是否进行随机垂直翻转 #计算整个训练样本集的数量以用于特征值归一化等处理 datagen.fit(dataset.train_images) #利用生成器开始训练模型—0.7*N self.model.fit_generator(datagen.flow(dataset.train_images, dataset.train_labels, batch_size = batch_size), steps_per_epoch = dataset.train_images.shape[0], epochs = nb_epoch, validation_data = (dataset.valid_images, dataset.valid_labels)) if __name__ == '__main__': dataset = Dataset('e:\saving') dataset.load()#实例操作,完成实际数据加载和预处理 model = Model() model.build_model(dataset) #训练数据 model.train(dataset) ```

keras模型的预测(predict)结果全是0

使用keras搭了一个模型并且对其进行了训练,得到模型在百度云盘中:链接:https://pan.baidu.com/s/1wQ5MLhPDfhwlveY-ib92Ew 密码:f3gk, 使用keras.predict时,无论模型输入什么输出都是0,代码如下: ```python from keras.models import Sequential, Model from keras.layers.convolutional_recurrent import ConvLSTM2D from keras.layers.normalization import BatchNormalization from keras.utils import plot_model from keras.models import load_model from keras import metrics import numpy as np import os import json import keras import matplotlib.pyplot as plt import math from keras import losses import shutil from keras import backend as K from keras import optimizers # 定义损失函数 def my_loss(y_true, y_pred): if not K.is_tensor(y_pred): y_pred = K.constant(y_pred, dtype = 'float64') y_true = K.cast(y_true, y_pred.dtype) return K.mean(K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), None))) # 定义评价函数metrics def mean_squared_percentage_error(y_true, y_pred): if not K.is_tensor(y_pred): y_pred = K.constant(y_pred, dtype = 'float64') y_true = K.cast(y_true, y_pred.dtype) return K.mean(K.square((y_pred - y_true)/K.clip(K.abs(y_true),K.epsilon(), None))) model_path = os.path.join('model/model' ,'model.h5') seq = load_model(model_path, custom_objects={'my_loss': my_loss,'mean_squared_percentage_error':mean_squared_percentage_error}) print (seq.summary()) input_data = np.random.random([1, 12, 56, 56, 1]) output_data = seq.predict(input_data, batch_size=16, verbose=1) print (output_data[0][:,:,0]) ``` 输出如下: ```python Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv_lst_m2d_1 (ConvLSTM2D) (None, None, 56, 56, 40) 59200 _________________________________________________________________ batch_normalization_1 (Batch (None, None, 56, 56, 40) 160 _________________________________________________________________ conv_lst_m2d_2 (ConvLSTM2D) (None, None, 56, 56, 40) 115360 _________________________________________________________________ batch_normalization_2 (Batch (None, None, 56, 56, 40) 160 _________________________________________________________________ conv_lst_m2d_3 (ConvLSTM2D) (None, 56, 56, 1) 1480 ================================================================= Total params: 176,360 Trainable params: 176,200 Non-trainable params: 160 None 1/1 [==============================] - 1s 812ms/step [[ 0. 0. 0. ... 0. 0. 0.] [ 0. 0. 0. ... 0. 0. 0.] [ 0. 0. 0. ... 0. 0. 0.] ... [ 0. 0. 0. ... 0. 0. 0.] [ 0. 0. 0. ... 0. 0. 0.] [ 0. 0. 0. ... 0. 0. -0.]] ``` 不懂为什么会这样,即便随机生成一组数据作为输入,结果也是这样

大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了

大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...

在中国程序员是青春饭吗?

今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...

程序员请照顾好自己,周末病魔差点一套带走我。

程序员在一个周末的时间,得了重病,差点当场去世,还好及时挽救回来了。

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

你以为这样写Java代码很6,但我看不懂

为了提高 Java 编程的技艺,我最近在 GitHub 上学习一些高手编写的代码。下面这一行代码(出自大牛之手)据说可以征服你的朋友,让他们觉得你写的代码很 6,来欣赏一下吧。 IntStream.range(1, 5).boxed().map(i -&gt; { System.out.print("Happy Birthday "); if (i == 3) return "dear NAME"...

上班一个月,后悔当初着急入职的选择了

最近有个老铁,告诉我说,上班一个月,后悔当初着急入职现在公司了。他之前在美图做手机研发,今年美图那边今年也有一波组织优化调整,他是其中一个,在协商离职后,当时捉急找工作上班,因为有房贷供着,不能没有收入来源。所以匆忙选了一家公司,实际上是一个大型外包公司,主要派遣给其他手机厂商做外包项目。**当时承诺待遇还不错,所以就立马入职去上班了。但是后面入职后,发现薪酬待遇这块并不是HR所说那样,那个HR自...

女程序员,为什么比男程序员少???

昨天看到一档综艺节目,讨论了两个话题:(1)中国学生的数学成绩,平均下来看,会比国外好?为什么?(2)男生的数学成绩,平均下来看,会比女生好?为什么?同时,我又联想到了一个技术圈经常讨...

副业收入是我做程序媛的3倍,工作外的B面人生是怎样的?

提到“程序员”,多数人脑海里首先想到的大约是:为人木讷、薪水超高、工作枯燥…… 然而,当离开工作岗位,撕去层层标签,脱下“程序员”这身外套,有的人生动又有趣,马上展现出了完全不同的A/B面人生! 不论是简单的爱好,还是正经的副业,他们都干得同样出色。偶尔,还能和程序员的特质结合,产生奇妙的“化学反应”。 @Charlotte:平日素颜示人,周末美妆博主 大家都以为程序媛也个个不修边幅,但我们也许...

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

如果你是老板,你会不会踢了这样的员工?

有个好朋友ZS,是技术总监,昨天问我:“有一个老下属,跟了我很多年,做事勤勤恳恳,主动性也很好。但随着公司的发展,他的进步速度,跟不上团队的步伐了,有点...

我入职阿里后,才知道原来简历这么写

私下里,有不少读者问我:“二哥,如何才能写出一份专业的技术简历呢?我总感觉自己写的简历太烂了,所以投了无数份,都石沉大海了。”说实话,我自己好多年没有写过简历了,但我认识的一个同行,他在阿里,给我说了一些他当年写简历的方法论,我感觉太牛逼了,实在是忍不住,就分享了出来,希望能够帮助到你。 01、简历的本质 作为简历的撰写者,你必须要搞清楚一点,简历的本质是什么,它就是为了来销售你的价值主张的。往深...

程序员写出这样的代码,能不挨骂吗?

当你换槽填坑时,面对一个新的环境。能够快速熟练,上手实现业务需求是关键。但是,哪些因素会影响你快速上手呢?是原有代码写的不够好?还是注释写的不够好?昨夜...

带了6个月的徒弟当了面试官,而身为高级工程师的我天天修Bug......

即将毕业的应届毕业生一枚,现在只拿到了两家offer,但最近听到一些消息,其中一个offer,我这个组据说客户很少,很有可能整组被裁掉。 想问大家: 如果我刚入职这个组就被裁了怎么办呢? 大家都是什么时候知道自己要被裁了的? 面试软技能指导: BQ/Project/Resume 试听内容: 除了刷题,还有哪些技能是拿到offer不可或缺的要素 如何提升面试软实力:简历, 行为面试,沟通能...

优雅的替换if-else语句

场景 日常开发,if-else语句写的不少吧??当逻辑分支非常多的时候,if-else套了一层又一层,虽然业务功能倒是实现了,但是看起来是真的很不优雅,尤其是对于我这种有强迫症的程序"猿",看到这么多if-else,脑袋瓜子就嗡嗡的,总想着解锁新姿势:干掉过多的if-else!!!本文将介绍三板斧手段: 优先判断条件,条件不满足的,逻辑及时中断返回; 采用策略模式+工厂模式; 结合注解,锦...

离职半年了,老东家又发 offer,回不回?

有小伙伴问松哥这个问题,他在上海某公司,在离职了几个月后,前公司的领导联系到他,希望他能够返聘回去,他很纠结要不要回去? 俗话说好马不吃回头草,但是这个小伙伴既然感到纠结了,我觉得至少说明了两个问题:1.曾经的公司还不错;2.现在的日子也不是很如意。否则应该就不会纠结了。 老实说,松哥之前也有过类似的经历,今天就来和小伙伴们聊聊回头草到底吃不吃。 首先一个基本观点,就是离职了也没必要和老东家弄的苦...

2020阿里全球数学大赛:3万名高手、4道题、2天2夜未交卷

阿里巴巴全球数学竞赛( Alibaba Global Mathematics Competition)由马云发起,由中国科学技术协会、阿里巴巴基金会、阿里巴巴达摩院共同举办。大赛不设报名门槛,全世界爱好数学的人都可参与,不论是否出身数学专业、是否投身数学研究。 2020年阿里巴巴达摩院邀请北京大学、剑桥大学、浙江大学等高校的顶尖数学教师组建了出题组。中科院院士、美国艺术与科学院院士、北京国际数学...

为什么你不想学习?只想玩?人是如何一步一步废掉的

不知道是不是只有我这样子,还是你们也有过类似的经历。 上学的时候总有很多光辉历史,学年名列前茅,或者单科目大佬,但是虽然慢慢地长大了,你开始懈怠了,开始废掉了。。。 什么?你说不知道具体的情况是怎么样的? 我来告诉你: 你常常潜意识里或者心理觉得,自己真正的生活或者奋斗还没有开始。总是幻想着自己还拥有大把时间,还有无限的可能,自己还能逆风翻盘,只不是自己还没开始罢了,自己以后肯定会变得特别厉害...

男生更看重女生的身材脸蛋,还是思想?

往往,我们看不进去大段大段的逻辑。深刻的哲理,往往短而精悍,一阵见血。问:产品经理挺漂亮的,有点心动,但不知道合不合得来。男生更看重女生的身材脸蛋,还是...

程序员为什么千万不要瞎努力?

本文作者用对比非常鲜明的两个开发团队的故事,讲解了敏捷开发之道 —— 如果你的团队缺乏统一标准的环境,那么即使勤劳努力,不仅会极其耗时而且成果甚微,使用...

为什么程序员做外包会被瞧不起?

二哥,有个事想询问下您的意见,您觉得应届生值得去外包吗?公司虽然挺大的,中xx,但待遇感觉挺低,马上要报到,挺纠结的。

当HR压你价,说你只值7K,你该怎么回答?

当HR压你价,说你只值7K时,你可以流畅地回答,记住,是流畅,不能犹豫。 礼貌地说:“7K是吗?了解了。嗯~其实我对贵司的面试官印象很好。只不过,现在我的手头上已经有一份11K的offer。来面试,主要也是自己对贵司挺有兴趣的,所以过来看看……”(未完) 这段话主要是陪HR互诈的同时,从公司兴趣,公司职员印象上,都给予对方正面的肯定,既能提升HR的好感度,又能让谈判气氛融洽,为后面的发挥留足空间。...

面试阿里p7,被按在地上摩擦,鬼知道我经历了什么?

面试阿里p7被问到的问题(当时我只知道第一个):@Conditional是做什么的?@Conditional多个条件是什么逻辑关系?条件判断在什么时候执...

Python爬虫,高清美图我全都要(彼岸桌面壁纸)

爬取彼岸桌面网站较为简单,用到了requests、lxml、Beautiful Soup4

无代码时代来临,程序员如何保住饭碗?

编程语言层出不穷,从最初的机器语言到如今2500种以上的高级语言,程序员们大呼“学到头秃”。程序员一边面临编程语言不断推陈出新,一边面临由于许多代码已存在,程序员编写新应用程序时存在重复“搬砖”的现象。 无代码/低代码编程应运而生。无代码/低代码是一种创建应用的方法,它可以让开发者使用最少的编码知识来快速开发应用程序。开发者通过图形界面中,可视化建模来组装和配置应用程序。这样一来,开发者直...

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

大三实习生,字节跳动面经分享,已拿Offer

说实话,自己的算法,我一个不会,太难了吧

程序员垃圾简历长什么样?

已经连续五年参加大厂校招、社招的技术面试工作,简历看的不下于万份 这篇文章会用实例告诉你,什么是差的程序员简历! 疫情快要结束了,各个公司也都开始春招了,作为即将红遍大江南北的新晋UP主,那当然要为小伙伴们做点事(手动狗头)。 就在公众号里公开征简历,义务帮大家看,并一一点评。《启舰:春招在即,义务帮大家看看简历吧》 一石激起千层浪,三天收到两百多封简历。 花光了两个星期的所有空闲时...

Java岗开发3年,公司临时抽查算法,离职后这几题我记一辈子

前几天我们公司做了一件蠢事,非常非常愚蠢的事情。我原以为从学校出来之后,除了找工作有测试外,不会有任何与考试有关的事儿。 但是,天有不测风云,公司技术总监、人事总监两位大佬突然降临到我们事业线,叫上我老大,给我们组织了一场别开生面的“考试”。 那是一个风和日丽的下午,我翘着二郎腿,左手端着一杯卡布奇诺,右手抓着我的罗技鼠标,滚动着轮轴,穿梭在头条热点之间。 “淡黄的长裙~蓬松的头发...

大牛都会用的IDEA调试技巧!!!

导读 前天面试了一个985高校的实习生,问了他平时用什么开发工具,他想也没想的说IDEA,于是我抛砖引玉的问了一下IDEA的调试用过吧,你说说怎么设置断点...

面试官:你连SSO都不懂,就别来面试了

大厂竟然要考我SSO,卧槽。

立即提问
相关内容推荐